কাজ : ১। ট্রেসিং কাগজে যেকোনো ব্যাসার্ধের একটি বৃত্ত আঁক। O, বৃত্তের কেন্দ্র নাও। ব্যাস ভিন্ন একটি জ্যা AB আঁক। O বিন্দুর মধ্য দিয়ে কাগজটি এমনভাবে ভাঁজ কর যেন, জ্যা-এর প্রান্তবিন্দুদ্বয় A ও B মিলে যায়। ভাঁজ বরাবর রেখাংশ OM আঁক যা জ্যাকে M বিন্দুতে ছেদ করে। তা হলে M জ্যা-এর মধ্যবিন্দু। ZOMA ও ZOMB কোণগুলো পরিমাপ কর। এরা প্রত্যেকে কি এক সমকোণের সমান? |
বৃত্তের কেন্দ্র ও ব্যাস ভিন্ন কোনো জ্যা-এর মধ্যবিন্দুর সংযোজক রেখাংশ ঐ জ্যা-এর উপর লম্ব।
মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে AB ব্যাস নয় এমন একটি জ্যা
এবং M এই জ্যা-এর মধ্যবিন্দু। O, M যোগ করি।
প্রমাণ করতে হবে যে, OM রেখাংশ AB জ্যা-এর উপর লম্ব।
অঙ্কন : O, A এবং O, B যোগ করি।
প্রমাণ :
ধাপ | যথার্থতা |
---|---|
(১) ADAM এবং AOBM এ AM = BM OA = OB এবং OM = OM সুতরাং ∆OAM ≅ ∆OBM ∴ ∠OMA = ∠OMB (২) যেহেতু কোণদ্বয় রৈখিক যুগল কোণ এবং এদের পরিমাপ সমান, সুতরাং, ∠OMA = ∠OMB = ১ সমকোণ। অতএব, OM | AB (প্রমাণিত) | [M, AB এর মধ্যবিন্দু] [উভয়ে একই বৃত্তের ব্যাসার্ধ] [সাধারণ বাহু] [বাহু-বাহু-বাহু উপপাদ্য]
|
কাজ : প্রমাণ কর যে, বৃত্তের কেন্দ্র থেকে ব্যাস ভিন্ন অন্য কোনো জ্যা-এর উপর অঙ্কিত লম্ব ঐ জ্যাকে সমদ্বিখণ্ডিত করে। [ইঙ্গিত : সমকোণী ত্রিভুজের সর্বসমতা ব্যবহার কর] |
অনুসিদ্ধান্ত ১। বৃত্তের যেকোনো জ্যা-এর লম্বসম-দ্বিখণ্ডক কেন্দ্রগামী।
অনুসিদ্ধান্ত ২। যেকোনো সরলরেখা একটি বৃত্তকে দুইয়ের অধিক বিন্দুতে ছেদ করতে পারে না।
Read more